
A natural construction for the real numbers

Norbert A’Campo

We propose a new construction of the real number system, that is built directly upon
the additive group of integers and has its roots in the definition due to Henri Poincaré
[P, pages 230–233,] of the rotation number of an orientation preserving homeomor-
phism of the circle. The definitions of addition, multiplication and comparison of real
numbers are very natural in our setting. The proposed definition of real numbers is
illustrated with examples that are irrational, roots of an integral polynomial equation,
but not expressible by radicals, or not root of an integral polynomial equation. I thank
Sebastian Baader, Etienne Ghys and Domingo Toledo for stimulating discussions.

Slopes and definition of the real numbers.

Let (Z, +) be the set of integers together with the arithmetic operation of addition. The
basic objects in our construction are slopes. A slope is by definition a map λ : Z → Z,
with the property that the set {λ(m + n) − λ(m) − λ(n) | m, n ∈ Z} is finite. Two
slopes λ, λ′ are equivalent if the set {λ(n)− λ′(n) | n ∈ Z} is finite.

Definition: A real number is an equivalence class of slopes.

Let R denote the set of real numbers. For j ∈ Z, let j̄ : Z → Z be the map
j̄(n) := nj. The linear map j̄ is a slope for which the expression j̄(n+m)− j̄(n)− j̄(m)
takes only the value 0. We identify an integer j ∈ Z with the real number represented
by the slope j̄. After this identification the set of integers Z becomes a subset of the
set of real numbers R. We see that among the real numbers the integers appear as
those real numbers, which are representable by a linear slope.

For p, q ∈ Z, q > 0, let the map φ : Z → Z be defined by φ(n) := min{k ∈ N |
qk ≥ pn}, n ∈ N, n > 0 and by φ(−n) = −φ(n) for n ∈ Z, n ≤ 0. The map φ is a slope
representing the rational number p/q, i.e. the slope φ represents a real number which
is a solution of the equation qx = p. This will become clear, when we have defined
multiplication of real numbers in our setting. As for the integers we identify the set of
rational numbers Q with a subset of R. One can characterize the rational numbers as
those real numbers, which are representable by a slope λ, such that for some integer
q > 0 the map n ∈ Z 7→ λ(qn) ∈ Z is linear.

We now define the basic arithmetic operations such as addition and multiplication
of real numbers.

Let a, b ∈ R be real numbers. Let α, β be slopes representing the real numbers a
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and b. The map α + β : Z → Z, which is defined by (α + β)(n) := α(n) + β(n), is
again a slope and its equivalence class is independent of the choice of representatives
α, β for a, b. We define the sum a + b ∈ R of a, b ∈ R as the equivalence class of the
slope α + β : Z → Z.

The composition α ◦ β : Z → Z is again a slope, and we define the product ab ∈ R
as the equivalence class of the composition α ◦ β : Z → Z.

The consistency of this definition follows from the following lemma.

Lemma 1 Let the slopes α, α′ represent a ∈ R and the slopes β, β′ represent b ∈ R.
Then the compositions α ◦ β and α′ ◦ β′ are equivalent slopes.

Proof. We first show that the map α ◦ β is a slope. Let Eα and Eβ be finite subsets
in Z, such that α(n + m)− α(n)− α(m) ∈ Eα and β(n + m)− β(n)− β(m) ∈ Eβ for
n,m ∈ Z. Hence, for n,m ∈ Z there exist u, u′ ∈ Eα, v ∈ Eβ with

α ◦ β(n) + α ◦ β(m)− α ◦ β(n + m) =

α(β(n) + β(m)) + u− α(β(n) + β(m)− v) =

α(β(n) + β(m)) + u− (α(β(n) + β(m)) + α(−v)− u′) = u− α(−v)− u′.

We conclude that the expression α ◦ β(n) + α ◦ β(m)− α ◦ β(n + m), n, m ∈ Z, takes
its values in a finite set. Hence, the map α ◦ β and, with the same justification, also
the map α′ ◦ β′ are slopes.

Let Eα,α′ and Eβ,β′ be finite sets such that we have α(n) − α′(n) ∈ Eα,α′ and
β(n) − β′(n) ∈ Eβ,β′ for n ∈ Z. Hence, for n ∈ Z there exist r ∈ Eα,α′ , s ∈ Eβ,β′ and
u ∈ Eα with

α ◦ β(n)− α′ ◦ β′(n) = α(β′(n)− s)− (α(β′(n)) + r) =

α(β′(n)) + α(−s)− u− (α(β′(n)) + r) = α(−s)− r − u.

We conclude that the expression α ◦β(n)−α′ ◦β′(n), n ∈ Z, takes its values in a finite
set. Hence, the slopes α ◦ β and α′ ◦ β′ are equivalent.

Let N := {n ∈ Z | n ≥ 0} be the set of natural numbers. We call a slope λ positive,
if the set {λ(n) | n ∈ N, λ(n) ≤ 0} is finite, while the set {λ(n), n ∈ Z}, is infinite. A
real number a is positive, if its representing slopes are positive.

From this definition of positivity we obtain the ordering of the real numbers as
usual in the following way. If a is positive, we say that a > 0 and 0 < a hold. The
real number a is defined to be less then the real number b if there exists a positive real
number t with b = a + t. If a is less then b, we say that a < b holds.

We illustrate the definitions by examples before stating and verifying that the set
R with the addition + , multiplication · and order relation < satisfies all the axioms
of the real numbers, i.e. of a complete totally ordered archimedean field.
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A map f : Z → Z is called odd if for all n ∈ Z the property f(−n) = −f(n) holds.
An odd map f : Z → Z is determined by its restriction to N+ := {n ∈ Z | n > 0}.
Let λ be an arbitrary slope. Then the map κ : Z → Z with κ(0) = 0 defined by
κ(n) := λ(n), n > 0, and by κ(n) := −λ(−n), n < 0, is an odd slope, which is equivalent
to the slope λ. So every real number can be represented by an odd slope. In order
to verify that an odd map γ : Z → Z is a slope, it suffices to check that the set
{γ(n + m)− γ(n)− γ(m) | n, m ∈ N+} is finite.

We will construct a slope that represents the number
√

2. Let ρ : Z → Z be
the odd map defined by ρ(n) = min{k ∈ N | 2n2 ≤ k2}, n ∈ N+. We have for
n ∈ N+ the inequalities: n ≤ ρ(n) ≤ 2n, 2n2 ≤ ρ(n)2, (ρ(n) − 1)2 ≤ 2n2. Hence
2n2 ≤ ρ(n)2 ≤ 2n2 + 2ρ(n) − 1 ≤ 2(n + 1)2. For n,m ∈ N+ we deduce 2nm ≤
ρ(n)ρ(m) ≤ 2(n + 1)(m + 1). The map ρ is a slope, since for n, m ∈ N+ we estimate

x := (−ρ(n + m) + ρ(n) + ρ(m))(ρ(n + m) + ρ(n) + ρ(m)) =

−ρ(n + m)2 + ρ(n)2 + ρ(m)2 + 2ρ(n)ρ(m)

by
−4n− 4m− 2 = −2(n + m + 1)2 + 2n2 + 2m2 + 4nm ≤ x ≤

−2(n + m)2 + 2(n + 1)2 + 2(m + 1)2 + 4(n + 1)(m + 1) = 8m + 8n + 8

and with ρ(n+m)+ρ(n)+ρ(m) ≥ n+m+1, we conclude |ρ(n+m)−ρ(n)−ρ(m)| ≤ 8.
The equivalence class of ρ is a positive real number a satisfying a2 = 2. Indeed,
the number a2 is represented by the composition ρ ◦ ρ. We have for n ∈ N+ the
inequalities 4n2 ≤ 2ρ(n)2 ≤ ρ(ρ(n))2 ≤ 2(ρ(n) + 1)2 ≤ 4n2 + 8n + 2 ≤ 4(n + 1)2

showing 2n ≤ ρ(ρ(n)) ≤ 2n+2, which means that the slopes ρ ◦ ρ and 2̄ are equivalent
and represent the integer 2. Hence ρ represents the square root

√
2 of 2, which is the

length of the diagonal of a unit square and can not be represented as a fraction p
q
, see

[F,V].

We will now construct a real number that is a root of the polynomial p(x) :=
x5 + x − 3. Let the odd map α : Z → Z be defined by α(n) := min{k ∈ N | 3n5 ≤
k5+n4k} = min{k ∈ N | p( k

n
) ≥ 0}, n ∈ N+. Observe that that p(α(n)−1

n
) ≤ 0 ≤ p(α(n)

n
)

and α(n)
n

≤ 6
5

hold and that p(α(n)
n

) = p(α(n)−1
n

+ 1
n
) ≤ 6131

125n
≤ 50

n
follows. The map

α is a slope and represents the real root a of the equation x5 + x − 3 = 0, which can
not be represented by a compound radical expression after the work of Paolo Ruffini
(1762-1822) and of Niels Henrik Abel (1802–1829), see [A,R,S]. We show that α is a

slope. For n, m ∈ N+ define the rational numbers a− := max{α(n)−1
n

, α(m)−1
m

, α(m+n)−1
m+n

}
and a+ := min{α(n)

n
, α(m)

m
, α(m+n)

m+n
}. From the monotonicity of p and the definition of

α we deduce p(a−) ≤ 0, p(a+) ≥ 0 and a− ≤ a+. Let A be any rational number with
a− ≤ A ≤ a+. We have the inequalities |α(n) − nA| ≤ 1, |α(m) − mA| ≤ 1 and
|α(m + n) − (m + n)A| ≤ 1, that show |α(m + n) − α(m) − α(n)| ≤ 3. Let a be the
real number that is represented by the slope α. We show p(a) = 0 by showing that the
slope α◦5 + α− 3̄ is bounded. Here we have used the notation α◦e for the e-th iterate,
e ∈ N, of α. It is not at all easy to handle directly iterates of slopes. The following
estimate helps out and is proved by induction upon the exponent e ∈ N+

|ne−1α◦e(n)− α(n)e| ≤ ne−1(1 + |α(1)|+ Sα)e−1, n ∈ N+,
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where the quantity Sα := max{|α(u + v) − α(u) − α(v)|, u, v ∈ Z} measures the non-
linearity of the slope α. Note also |α(n)| ≤ |n|(|α(1)| + Sα). It follows that the slope

α◦e is equivalent to the odd slope defined by n ∈ N+ 7→ [α(n)e

ne−1 ]. So the slope α◦5 +α− 3̄

is equivalent to the odd slope ε defined by n ∈ N+ 7→ [α(n)5

n4 ]+α(n)−3n. The slope ε is

bounded, since for n ∈ N+ we have 0 ≤ ε(n) = np(α(n)
n

) ≤ 50. Here [?] is the Gaussian
integral part bracket [x] := max{k ∈ Z | k ≤ x}, x ∈ R.

Let β : Z → Z be the odd map with β(n) := #{(p, q) ∈ Z×Z | p2 + q2 ≤ n}, n > 0.
Unit squares in the plane with centers at the lattice points (p, q) ∈ Z×Z, p2 + q2 ≤ n,
cover the disk of radius

√
n− 1

2

√
2 and are contained in the disk of radius

√
n + 1

2

√
2.

Hence |β(n) − nπ| ≤ 2
√

2
√

n, n ∈ N. It follows that the odd map β̄ defined by

n ∈ N+ 7→ [β(n2)
n

] is a slope. The slope β̄ represents the area π of the unit disk in the
plane, see Chap. 1 in Anschauliche Geometrie of David Hilbert & S. Cohn-Vossen [H-
V]. See also the book of William Jones (1675-1749) Synopsis palmariorum mathesios,
1706, in which the notation π for that area was used for the first time. Johann Heinrich
Lambert (1728-1777) has proved in his communication of 1761 to the Academy in
Berlin that the number π is not a rational number, see [Le]. Adrien-Marie Legendre
(1752-1833) has proved that π2 is not rational. Carl Louis Ferdinand von Lindemann
(1852-1939) was the first to prove in the year 1882 that π is transcendental, that is, π
is not the root of any polynomial equation with integral coefficients. We recommend
reading the recent book by Pierre Eymard and Jean-Pierre Lafon, The number π.
Remark. The map β is not a slope since the quantity s(n) := β(n)− β(n− 1)− β(1)
is not bounded. One has for instance s(5u) = 4u− 1, u ∈ N+.

The number e appeared in the sixteenth century, when it was noticed that the ex-
pression (1+ 1

n
)n for compound interest increases with n to a certain value 2.7182818 · · ·,

see the book “e The Story of a Number” by Eli Maor [M]. The number e became of
central importance in Mathematics since its interpretations in Geometry and Analysis
by Grégoire de Saint-Vincent (1584-1667). It is not obvious to define the number e
with a slope. We use the solution to a problem, see [D], of Jakob Steiner (1796-1863)
and define for n ∈ N, n > 0, the integer ε(n) to be the natural number k, k > 0, such
that the expression ( k

n
)

n
k takes its maximal value. The corresponding odd function

ε : Z → Z is a slope representing the number e.

The classical construction of the system of real numbers is based on Dedekind cuts
or on Cauchy sequences (rn)n∈N of rational numbers. The present construction by
slopes is related to the classical ones as follows: To a slope λ corresponds a Dedekind
cut (A, B) by setting A := {p

q
∈ Q | p̄ ≤ λ ◦ q̄} and B := {p

q
∈ Q | λ ◦ q̄ ≤ p̄} and also

a Cauchy sequence (rn)n∈N by setting rn := λ(n+1)
n+1

.

Well adjusted slopes.

We call a slope λ well adjusted if it is odd and satisfies the inequalities −1 ≤
λ(m + n) − λ(m) − λ(n) ≤ 1, n, m ∈ Z. One can say that a well adjusted slope need
not be a linear map from Z to Z, but deviates as little as possible from being linear.
Each slope is equivalent to a well adjusted slope, as shows the concentration Lemma
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below. So in particular, a real number can be represented by a well adjusted slope.

For integers p, q, q 6= 0, the result of optimal euclidean division of p by q will be denoted
by p : q. The optimal euclidean division is the integer r := p : q ∈ Z that satisfies the
inequalities 2p− |q| ≤ 2qr < 2p + |q|, where |q| := max{q,−q} is the absolute value of
q. For instance 4 : 7 = 1 but 3 : 7 = 0. If p/q, p, q ∈ Z, q 6= 0, denotes the fraction, then
we have |p/q − p : q| ≤ 1/2. For the optimal euclidean division, we have

Lemma 2 Let q ∈ N+ and a, b, c ∈ Z be such that −q ≤ a− b− c ≤ q. Then we have
−1 ≤ a : 3q − b : 3q − c : 3q ≤ 1.

Proof. The integer a : 3q − b : 3q − c : 3q differs from 0 by at most 1/2 + 1/2 + 1/2 +
|a/3q−b/3q−c/3q| ≤ 3/2+1/3 = 11/6. Hence we have −1 ≤ a : 3q−b : 3q−c : 3q ≤ 1,
since 11/6 < 2.

Lemma 3 Let n, m ∈ N+ and c ∈ Z. Then we have

−1 ≤ c : m(n + m)− c : n(n + m)− c : nm ≤ 1.

Proof. The integer c : m(n + m) − c : n(n + m) − c : nm differs from c/m(n + m) −
c/n(n + m)− c/nm = 0 by at most 1/2 + 1/2 + 1/2 = 3/2, hence −1 ≤ c : m(n + m)−
c : n(n + m)− c : nm ≤ 1, since 3/2 < 2.

Lemma 4 (Concentration Lemma) Let λ be a slope. Let s ∈ N+ be such that for
all n, m ∈ Z we have −s ≤ λ(m + n) − λ(m) − λ(n) ≤ s. Let λ′ : Z → Z be defined
by λ′(n) := λ(3sn) : 3s, n ∈ Z. Then the map λ′ is a well adjusted slope, which is
equivalent to the slope λ.

Proof. By induction on t ∈ N+, we prove −s(t− 1) ≤ λ(tn)− tλ(n) ≤ s(t− 1). For
t = 3s we get−s(3s−1) ≤ λ(3sn)−3sλ(n) ≤ s(3s−1) and hence−s ≤ λ′(n)−λ(n) ≤ s,
which shows the equivalence of λ and λ′. From −s ≤ λ(3sn+3sm)−λ(3sn)−λ(3sm) ≤
s we deduce −1 ≤ λ′(n + m)− λ′(n)− λ′(m) ≤ 1.

A well adjusted slope λ has the following properties:
- |λ(n + 1)− λ(n)| ≤ |λ(1)|+ 1,
- if for some k ∈ N+ we have λ(k) > 1 (or λ(k) < −1), then we have for any n ∈ N+

the inequality λ(n) ≥ −1 + n : k (or λ(n) ≤ +1− n : k),
- if for some k ∈ Z we have λ(k) > 1, then for v ∈ Z the set {n ∈ Z | λ(n) = v} is
finite and has fewer then k + 1 elements,
- if for some k ∈ Z we have λ(k) > 1, then for any v ∈ Z, there exists n ∈ Z with
|v − λ(n)| ≤ |λ(1)|+ 1,
- the real number x represented by λ satisfies x > 0 if and only if there exists a ∈ N
with λ(a) > 1,
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- let y be a real number represented by a well adjusted slope κ. We have x > y if and
only if there exists n ∈ N+ with λ(n) > 2 + κ(n).

From the above lemma and remarks we obtain:

Lemma 5 Let λ be a slope. If λ takes infinitely many values, then there exist b, B ∈
N+ such that the following inequalities hold:

|λ(n + k)− λ(n)| ≤ kb, n ∈ Z, k ∈ N,

|λ(n + kB)− λ(n)| ≥ k, n ∈ Z, k ∈ N.

In particular, the slope λ takes each value at most 2B − 1 times.

The axioms.

We now state, partially in abbreviated form, the axioms for a complete totally ordered
field, that are satisfied by the quadruple (R, +, ·, <). The presentation of the axioms
is slightly redundant.

1. The pair (R, +) is an abelian group.

2. The triple (R, +, ·) is a field.

3. The quadruple (R, +, ·, <) is an archimedean, complete, totally ordered field.

Complete ordered field, i.e.

• for any non-empty subset T bounded from above in R there exists a least
upper bound in R called the supremum of T . It will be denoted by Sup T .

Archimedian ordered field, i.e.

• for a ∈ R, a > 0 and A ∈ R there exists a N ∈ N such that Na > A.

We now begin the verification of the axioms for the system of real numbers, that
we have introduced above. We leave out those verifications, that are straightforward
and can be done without using well adjusted slopes as representatives.

The addition + of integers makes Z into an abelian group (Z, +). It follows easily
that (R, +) is also an abelian group.

The triple (R, +, ·) is a skew field, i.e. verifies all the field axioms. Multiplication
is associative since the composition of maps is. Only commutativity and the existence
of inverses need extra care. For two slopes α, β we have the estimates

nα(β(n)) = α(nβ(n)) + E1 = α(β(n)n) + E1 = β(n)α(n) + E2 + E1
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with |E1| ≤ |n|Sα and |E2| ≤ |β(n)|Sα ≤ |n|(|β(1) + Sβ)Sα. It follows

|α ◦ β(n)− β ◦ α(n)| ≤ Sα(1 + |β(1)|+ Sβ) + Sβ(1 + |α(1)|+ Sα)

showing that the slopes α ◦ β and β ◦ α are equivalent, hence the multiplication is
commutative.

Let 1 be the real number represented by the identity map IdZ : Z → Z. Clearly
we have for a real number x the properties 1x = x1 = x, which makes 1 into the unit
element of the multiplication · of R.

We now construct a right inverse for x ∈ R, x 6= 0, i.e. an element y ∈ R satisfying
xy = 1. Let α be a well adjusted representing slope for x. It follows, that for each
v ∈ Z we may choose nv ∈ Z with |v−α(nv)| ≤ |α(1)|+1. We define a map β : Z → Z
by β(v) := nv.

We claim that the map β is a slope. Indeed, for v, w ∈ Z we have

|α(β(v + w)− β(v)− β(w))| = |α(nv+w − nv − nw)| ≤

|(v + w)− v − w|+ 2 + 3(|α(1)|+ 1) = 3|α(1)|+ 5.

Since α takes each value only finitely many times, we conclude that the set {β(v +
w)− β(v)− β(w) | v, w ∈ Z} is finite.

For v ∈ Z we have α ◦ β(v) = α(nv), so the slopes α ◦ β and IdZ are equivalent,
since |v − α(nv)| ≤ |α(1)|+ 1 holds. It follows that xy = 1.

The pair (R, <) is an order relation. First we prove that the relation < is total.
Let x, y be real numbers represented by the slopes α and β. We consider the slope
δ := α − β, which represents the number x − y. Let δ′ be the well adjusted slope
equivalent to δ given by the concentration lemma. If δ′(n) ∈ {−1, 0, 1} for all n ∈ Z
then we have x = y. If x 6= y we have for some n ∈ N either δ′(n) > 1, or δ′(n) < −1.
In the first case we have x > y and in the second case we have x < y. The case x = y
excludes x < y and x > y. The cases x < y and x > y exclude each other. It remains
only to prove transitivity. Let x, y, z be real numbers with x > y and y > z, which are
represented by the slopes α, β and γ. Let δ1, δ2 be well adjusted slopes equivalent to
the slopes α− β and β − γ. So for some n ∈ N+ and m ∈ N+ we have δ1(n) > 1 and
δ2(m) > 1. It follows that (δ1 + δ2)(nm) > 2. The well adjusted slope δ12 equivalent
to δ1 + δ2 will satisfy δ12(nm) > 1 and hence we have x > z.

The quadruple (R, +, ·, <) is an ordered field. Let x, y be reals satisfying x < y
and let t be real. We represent x, y, t by the well adjusted slopes α, β and τ . Since
x < y there exists b ∈ N with α(bn) < β(bn) − n, n ∈ N+. Hence, α(bn) + τ(bn) <
β(bn)+ τ(bn)−n, n ∈ N+, showing the monotonicity property for translations x+ t <
y + t. If t > 0, for some d ∈ N we have τ(dn) > n, n ∈ N+, hence τ(α(bdn)) <
τ(β(dbn))− n, n ∈ N+, showing the monotonicity property for the stretching tx < ty.

We now prove the archimedean property. Let a ∈ R with a > 0 and A ∈ R be
given. We construct N ∈ N such that Na > A, as follows. We represent a and A
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by well adjusted slopes λ and Λ. Since a > 0 holds, we may choose n ∈ N+ with
λ(n) > 1. Then λ(2n) > 2. Define N := 1+max{Λ(2n), 0}. Let κ be the well adjusted
slope equivalent to the slope Nλ. We have κ(2n) > Nλ(2n)−N > 2 + Λ(2n). Hence
Na > A.

Finally, we will establish the completeness. Let D be a non-empty subset in R
bounded from above by m ∈ R. So for x ∈ D we have the inequality x ≤ m. Let
∆ be a set of well adjusted slopes representing the real numbers in the set D. Let µ
be a well adjusted slope representing m. For every n ∈ N and every δ ∈ ∆ we have
δ(n) < µ(n) + 2. It follows that for n ∈ N+ the non-empty set {δ(n) | δ ∈ ∆} is
bounded from above by µ(n) + 2. Let σ : Z → Z be the odd map defined by

σ(n) := max{δ(n) | δ ∈ ∆}.

We claim that the map σ is a slope. Indeed, for u ∈ N+ let δu ∈ ∆ be a slope, which
attains at u the value max{δ(u) | δ ∈ ∆}. So, we have δu(u) = σ(u). For p, N ∈ N+

put q := pN . We compare δp, δq at p and q as follows. We have

δq(q) : N ≤ δp(p) + 1

since |δq(q) : N − δq(p)| ≤ 1 and δq(p) ≤ δp(p). We also have

Nδp(p) ≤ δp(q) + N ≤ δq(q) + N.

We conclude that for all p, N ∈ N+

|δp(p)− δpN(pN) : N | ≤ 1.

Hence for n, m ∈ N+, where we put c := δnm(n+m)(nm(n + m)), the following inequal-
ities hold:

|σ(n)− c : m(n + m)| ≤ 1,

|σ(m)− c : n(n + m)| ≤ 1,

|σ(n + m)− c : nm| ≤ 1.

For instance, the first inequality is obtained with p = n, N = m(n + m), q = Np and
by comparing δp and δq at the point p. From

|c : nm− c : m(n + m)− c : n(n + m)| ≤ 1

it follows that for all n, m ∈ N+ we have

|σ(n + m)− σ(n)− σ(m)| ≤ 1 + 3 = 4,

which proves our claim.

Let s be the real number represented by the slope σ. For all x ∈ D we have the
inequality x ≤ s, since for a slope δ ∈ ∆ representing x the inequalities

δ(n) ≤ δn(n) = σ(n), n ∈ N+,
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hold. So s ∈ R is an upper bound for D.

In order to prove that s is the least upper bound of D, we show that no t ∈ R with
t < s is an upper bound of D. Indeed, let τ be a well adjusted slope for t ∈ R with
t < s. There exists n ∈ N+ with τ(n) < σ(n) − 2. Let x in D be represented by δn.
We have δn(n) > τ(n) + 2, hence x > t and t is not an upper bound for D.

Remarks: The above construction of the field of real numbers (R, +, ·) has as its
starting point the additive group (Z, +). It is well known that the order relation < on
R is encoded in the field structure of R, namely for x, y ∈ R we have x < y if and
only if y − x = t2 holds for some t ∈ R \ {0}. So we see that the real ordered field
(R, +, ·, >) is constructed directly out of the additive group of integers.

The group R/Z appears as second bounded cohomology group H2
b (Z,Z) with co-

efficients Z of the group Z. Bounded cohomology is defined by Michael Gromov in
the seminal paper [G]. An element θ ∈ H2

b (Z,Z) is by definition the class modulo
the boundary df of a bounded 1-cochain f : Z → Z of a bounded 2-cocycle on Z
with values in Z. A bounded 2-cocycle on Z with values in Z is a bounded map
θ : Z × Z → Z that satisfies dθ = 0. For example a real number a defines a bounded
2-cocycle θa(n,m) := [(n + m)a] − [na] − [ma]. The map a ∈ R 7→ θa induces
an isomorphism from R/Z to H2

b (Z,Z). We recall the formulae for differentials in
group cohomology: dθ(u, v, w) := θ(u, v) − θ(u + v, w) + θ(u, v + w) − θ(v, w) and
df(n,m) := f(n)− f(n+m)+ f(m). Our construction of the reals defines the additive
group (R, +) as the quotient R := C1

db(Z,Z)/C1
b (Z,Z), with

C1
db(Z,Z) := {1− cochains on Zwith values in Z and with bounded differential },

C1
b (Z,Z) := {bounded 1−cochains on Zwith values in Z}.

The composition of maps in C1
db(Z,Z) = {slopes} induces the multiplication in R.

The encoding of the order relation on R in the field structure has far reaching
consequences. For instance, the fact that a line incidence preserving bijection of the
real projective plane is a projective transformation, is such a consequence.

The first rigorous definitions for real numbers were published independently in
1872 by G. Cantor, E. Heine, Ch. Méray, and R. Dedekind. The rigorous definition of
convergence of a sequence of numbers was given by d’Alembert in 1765 and by Cauchy
in 1821 without having at the time a rigorous definition of real numbers. An exposition
of the construction of real numbers is given in the book “Grundlagen der Analysis” of
Edmund Landau [La]. We recommend reading the book “Analysis by Its History” by
E. Hairer and G. Wanner [H-W].
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